
NAS Parallel Benchmark Results

David H. Bailey, Eric Barszcz, Leonardo Dagum and Horst D. Simon

RNR Technical Report RNR-92-002
March 31, 1992

Abstract

The NAS Parallel Benchmarks have been developed at NASA Ames Research Center

to study the performance of parallel supercomputers. They represent a novel approach .to

benchmarking in that the eight benchmark problems are specified in a "pencil and paper _

fashion. In other words, the complete details of the problem to be solved are given in a

technical document, and except for a few restrictions, benchmarkers are free to select the

language constructs and implementation techniques best suited for a particular system.

This paper presents performance results of various systems using the NAS Parallel

Benchmarks. These results represent the best results that have been reported to us for the

specific systems listed. They represent implementation efforts performed by personnel in

both the NAS Applied Research Branch of NASA Ames and in other organizations.

Bailey and Ba_szcz axe employees of NASA Ames Research Center. Dagum and Simon

are employees of Computer Science Corp., sad their work was funded by the NASA Ames

Research Center under contract NAS2-12961. Mailing address for all authors: NASA Ames

Research Center, Mail Stop T045-1, Mofl'ett Field, CA 94035.

1. Introduction

The Numerical Aerodynamic Simulation (NAS) Program, which is based at NASA

Ames Research Center, is dedicated to advance the science of computational aerodynam-

ics. One key goal of the NAS organization is to demonstrate by the year 2000 an operational

computing system capable of simulating an entire aerospace vehicle system within a com-

puting time of one to several hours. It is currently projected that the solution of this grand

challenge problem will require a computer system that can perform scientific computations

at a sustained rate approximately one thousand times faster than current generation super-

computers. Most likely such a computer system will employ hundreds or even thousands

of processors operating in parallel.

At the present time, there are several commercial highly parallel systems available with

computing power roughly competitive with conventional supercomputers (even greater on

some special problems). Unfortunately, there is little reliable data on the performance

of such systems on state-of-the-art computational aerophysics problems. In general, the

science of performance evaluation has not kept pace with advances in parallel computer

hardware and architecture. There is not even a generally accepted benchmark, strategy for
highly parallel supercomputers.

In our view, the best benchmarking approach for highly parallel supercomputers is the

"paper and pencil" benchmark. The idea is to specify a set of problems only algorithmically.

Even the input data must be specified only on paper. Naturally, the problem has to be

specified in sufficient detail that a unique solution exists, and the required output has to

be brief yet detailed enough to certify that the problem has been solved correctly. But the

details of the implementation should be left to the programmer as far as possible.

To this end, we have devised the NAS Parallel Benchmarks (NPB). These are a set

of eight benchmark problems, each of which focma_ on some important aspect of highly

parallel supercomputing for aerophysica applications. Some extension of Fortran or C is

required for implementations, and reasonable limits are placed on the usage of assembly

code and the like, but otherwise programmers are free to utilize language constructs that

give the beat performance possible on the particular system being studied. The choice

of data structures, proceamr allocation and memory usage are generally left open to the
discretion of the implementer.

The eight problems consist of five "kernels" and three "simulated computational fluid

dynamics (CFD) applications". Ea_ of these is defused fully in [3]. The five kernels are

relatively compact problems, each of which emphasizes a particular type of numerical com-

putation. Compared with the simulated CFD applications, they can be implemented fairly

readily and provide insight as to the general levels of performance that can be expected on

these specific types of numerical computations.

The simulated CFD applications, on the other hand, usually require more effort to

implement, but they are more indicative of the types of actual data movement and com-

putation required in state-of-the-art CFD application vodu. For example, in an isolated

kernel a certain data structure may be very efficient on a certain system, and yet this data

structure would be inappropriate if incorporated into a larger application. By comparison,

2

the simulated CFD applications require data structures and implementation techniques

that are more typical of real CFD applications.

Space does not permit a complete description of these benchmark problems. A more

detailed description Of these benchmarks, together with the rules and restrictions associated

with the benchmarks, may be found in [2]. The full specification of the benchmarks is given

in [3].
Sample Fortran programs implementing the NPB on a single processor system are

available as an aid to implementors. These programs, as well as the benchmark document

itself, are available from the following address: NAS Systems Division, Mail Stop 258-8,

NASA Ames Research Center, Moffett Field, CA 94035, attn: NAS Parallel Benchmark

Codes. The sample codes are provided on Macintosh floppy disks and contain the Fortran

source codes, "README" files, input data files, and reference output data files for correct

implementations of the benchmark problems. These codes have been validated on a number

of computer systems ranging from conventional workstations to supercomputers.

In the following, each of the eight benchmarks will be briefly described, and then the

best performance results we have received to date for each computer system will be given in

Tables 2 through 9. These tables include memory requirements, run times and performance

ratios. The performance ratios compare individual timings with the current best time on

that benchmark achieved on one processor of a Cray Y-MP. The run times in each case

are elapsed time of day figures, measured in accordance with the specifications given in [3].

Memory requirements are currently available for only some of these implementations. We

hope to have complete information for these columns in future editions of this paper.

Note that performances rates are not cited in millions of floating point operations per

second (megaflops) in these tables. We suggest instead that the actual run times (or,

equivalently, the performance ratios) be examined when comparing different systems and

implementations. For those who wish to compute megaflops figures for the NAS Parallel

Benchmarks on any system, we insist that they be computed using the standard floating

point operation (flop) counts given in Table 1. Table 1 also contains megaflops rates

calculated in this manner for the current fastest implementation on one processor of the

Cray Y-MP.

With the exception of the Integer Sort benchmark, these standard flop counts were

determined by using the hardware performance monitor on a Cray Y-MP, and we believe

that they are close to the minimal counts required for these problems. In the case of the

Integer Sort benchmark, which does not involve floating-point operations, we selected a

value approximately equal to the number of integer operations required, in order to permit

the computation of performance rates analogous to megaflops rates. We reserve the right

to change these standard flop counts in the future if deemed necessary.

Whenever possible, we have tried to credit the actual individuals and organizations

who have contributed the performance results cited in the tables. In these citations, NAS

denotes the NAS Applied Research Branch at NASA Ames (including both NASA civil

servants and Computer Science Corp. contractors);RIACS denotes the parallelsystems

divisionof the Research Institutefor Advanced Computer Science (a research institute

located at NASA Ames); BBN denotes Bolt, Beranek and Newman; CRI denotes Cray

Research, Inc.; Intel denotes the Supercomputer Systems Division of Intel Corp.; and

TMC denotes Thinking Machines, Inc.

Unfortunately, the limited space in this report does not permit discussion of the methods

used in any of these implementations. However, we have included references to technical

papers describing these methods whenever such papers are available. Readers are referred

to these documents for full details.

This report includes a number of new results not previously published. The Cray C-90

results in particular have not previously been disclosed. In quite a few other instances,

results are improved from previous listings, reflecting improvements both in compilers

and implementations. Recently some new highly parallel systems have been released that

promise significantly higher performance than systems heretofore available. These include

the CM-5 from TMC, the Delta from Intel and the KSR-1 from Kendall Square, Inc. Efforts

are currently underway to port the NAS Parallel Benchmarks on these systems, and we

hope to have some initial results in the next two or three months.

2. The Embarrassingly Parallel Benchmark

The first of the five kernel benchmarks is an "embarrassingly parallel" problem. In

this benchmark, two-dimensional statistics are accumulated from a large number of Gaus-

sian pseudorandom numbers, which are generated according to a particular scheme that

is well-suited for parallel computation. This problem is typical of many "Monte-Carlo"

applications. Since it requires almost no communication, in some sense this benchmark

provides an estimate of the upper achievable limits for floating point performance on a

particular system.

Results for the embarrassingly parallel benchmark are shown in Table 2. Not all systems

exhibit high rates on this problem. This appears to stem from the fact that this benchmark

requires references to several mathematical intrinsic functions, such as the Fortran routines

AINT, SQRT, and LOG, and evidently these functions are not highly optimized on some

systems. The memory requirement for this benchmark was minimal on all systems.

The Intel iPSC/860 results are due to D. Bailey of NAS and P. Frederickson of RIACS

(now with CRI). The TC2000 results are due to stall at BBN. The Y-MP and C-90 results
are due to staff" at CRI. The CM-2 and CM-200 results are due to J. Richardson of TMC.

8. The Multigrid Benchmark

The second kernel benchmark is a simplified multigrid kernel, which solves a 3-D Poisson

PDE. This problem is simplified in the sense that it has constant rather than variable

coefficients as in a more realistic application. This code is s good test of both short

and long distance highly communication, although the communication patterns are highly

structured (as opposed to the conjugate gradient benchmark).

Results for this benchmark are shown in Table 3. The Intel results are due to P.

Frederickson of RIACS (now with CRI). The TC2000 results are due to stat[at BBN.

Y-MP results are due to staff" at CRI. CM-2 and CM-200 results are due to J. Richardson

st TMC.

4

Benchmark
Name

Embarra-qsingly Parallel

Multigrid

Conjugate Gradient

3-D FFT PDE

Integer Sort

LU Simulated CFD Application

SP Simulated CFD Application

BT Simulated CFD Application

Abbrev-

iation

EP

MG

CG

FT

IS

LU

SP

BT

Operation
Count

2.668 x 10 l°

3.905 x 1009

1.508 x 10 °9

5.631 x 10°g

7.812 x 10°a

6.457 x 101°

1.020 x I011

1.813 x 1011

Megaflops

on Y-MP/1

211

176

127

196

68

194

216

229

Table i: Standard Operation Counts and Current Y-MP/1 Megaflops Rates

Computer Problem

System Size

Y-MP 2 z'

C-90

TC2000

iPSC/860

CM-2

CM-200

No. Memory Time Ratio to

Proc. (mwords) (sec.) Y-MP/I

1 I 126.2 1.00

8 1 15.87 7.95

1 1 49.18 2.57

4 1 12.37 10.20

16 1 3.19 39.56

64 1 284.0 0.44

32 1 245.2 0.51

64 1 122.6 1.03

128 1 61.3 2.06

8K 1 126.6 1.00

16K 1 63.9 1.97

32K 1 33.7 3.74

64K 1 18.8 6.71

8K 1 76.9 1.64

16K 1 39.2 3.22

32K 1 20.7 6.10

64K 1 10.9 11.58

Table 2: Results of the Emb_-rusingly Paralld (EP) Benchmark

.5

Computer Problem

System Size

Y-MP 2563

C-90

iPSC/860

CM-2

CM-200

No.

Proc.

1

8

1

4

16

128

16K

32K

64K

16K

32K

Memory

(mwords)

Table 3: Results of the Multigrid (MG)

Time Ratio to

(sec.) Y-MP/I

22.22 1.00

2.96 7.51

8.65 2.57

2.42 9.18

0.96 23.14

9.7 2.29

45.8 0.49

26.0 0.85

14.1 1.58

30.2 0.74

17.2 1.29

Benchmark

4. The Conjugate Gradient Benchmark

In this benchmark, a conjugate gradient method is used to compute an approximation

to the smallest eigenvalue of a large, sparse, symmetric positive definite matrix. This

kernel is typical of unstructured grid computations in that it tests irregular long distance

communication and employs sparse matrix vector multiplication.

The irregular communication requirement of this benchmark is evidently a challenge

for all systems. Results are shown in Table 4. The Intel results are due to H. Simon (NAS)

and R. Schreiber (RIACS). The TC2000 results are due to staff at BBN. The Y-MP and

C-90 resultsare due to sta_ at CRI. The CM-2 resultsare due to J. Richardson of TMC.

5. The 3-D FFT PDE Benchmark

In this benchmark a 3-D partial differential equation is solved using FFTs. This kernel

performs the essence of many "spectral" codes. It is a good test of long-distance commu-

nication performance.

The rules of the NAS Parallel Benchmarks specify that assembly-coded, library routines

may be used to perform matrix multiplication and one-dimensional, two-dimensional or

three-dimensional FFTs. Thus this benchmark is somewhat unique in that computational

library routines may be legally employed.
Results are shown in Table 5. The TC2000 results are due to staff" at BBN. The Y-MP

results are due to stall' at CRI. The Intel results are due to E. Kushner of Inte]. The CM-2

and CM-200 results are due to J. Richardson of TMC.

8. The Integer Sort Benchmark

This benchmark tests a sorting operation that is important in "particle method" codes.

This type of application is similar to "particle in cell" applications of physics, wherein

6

Computer Problem

System Size

Y-MP 2.0 x 10 6

C-90

TC2000

iPSC/860

CM-2

No.

Proc.

1

8

1

4

16

40

128

16K

Memory

(mwords)

Time

(sec.)

11.92

2.38

4.56

1.51

0.58

51.4

21.5

14.4

Table 4: Results of the Conjugate Gradient (CG)

Ratio to

Y-MP/1

1.00

5.01

2.61

7.89

20.55

0.23

0.55

0.83

Benchmark

Computer

System

Y-MP

C-90

iPSC/860

CM-2

CM-200

Problem

Size

256 _ x 128

No. Memory

Proc. (mwords)
1 59

8 59

1 59

4 59

16 59

128 59

16K 59

32K 59

64K 59

8K 59

Time Ratio to

(sec.) Y-MP/1

28.77 1.00

4.19 6.87

10.35 2.78

2.77 10.38

1.26 22.83

10.8 2.67

37.0 0.78

18.2 1.58

11.4 2.52

45.6 0.63

Table 5: Results of the 3-D FFT PDE (FT) Benchmark

7

Computer Problem

System Size

Y-MP 2 _3

C-90

iPSC/860

CM-2

No.

Proc.

I

8

1

8

64

128

8K

16K

32K

Memory

(mwords)

25

29

25

29

Time

(see.)

11.46

1.85

5.88

0.85

52.5

32.0

215.1

111.5

56.0

Ratio to

Y-MP/1

1.00

6.19

1.95

13.48

0.22

0.36

0.05

0.10

0.20

Table 6: Results of the IntegerSort (IS) Benchmark

particles are assigned to cells and may drift out. The sorting operation is used to reassign

particles to the appropriate cells. This benchmark tests both integer computation speed

and communication performance.

This problem is unique in that floating point arithmetic is not involved. Significant

data communication, however, is required. Results are shown in Table 6. The Intel and

CM-2 results are due to L. Dagum of NAS. The Y-MP results are due to staff" at CRI.

7. The Three Simulated CFD Application Benchmarks

The three simulated CFD application benchmarks are intended to accurately represent

the principal computational and data movement requirements of modern CFD applications.

The first of these is the called the lower-upper diagonal (LU) benchmark. It does not

perform a LU factorization but instead employs a symmetric successive over-relaxation

(SSOR) numerical scheme to solve a regular-sparse, block (5 x 5) lower and upper triangular

system. This problem represents the computations associated with a newer class of implicit

CFD algorithms, typified at NASA Ames by the code "INS3D-LU ". This problem exhibits

a somewhat limited amount of parallelism compared to the next two.

The second simulated CFD application is called the scalar pentadiagonal (SP) bench-

mark. In this benchmark, multiple independent systems of non-diagonally dominant, scalar

pentadiagonal equations are solved. The third simulated CFD application is called the

block tridiagonal (BT) benchmark. In this benchmark, multiple independent systems of

non-diagonally dominant, block tridiagonal equations with a 5 × 5 block size are solved.

SP and the third simulated CFD application (BT) are representative of computations
associated with the implicit operators of CFD codes such as "ARC3D" at NASA Ames.

SP and BT are similar in many respects, but there is a fundamental difference with respect
to the communication to computation ratio.

Performance figures for the three simulated CFD applications are shown in Tables 7, 8

Computer Problem

System Size
Y-MP 643

C-90

TC2000

iPSC/860

CM-2

No.

Proc.

I

8

I

4

16

62

64

128

8K

16K

32K

Table 7: Results for the LU

Memory

(mwords)

12

16

14

14

14

Time Ratio to

(sec.) Y-MP/1
333.5 1.00

49.50 6.74

161.2 2.07

43.94 7.59

17.62 18.93

3032 0.11

690.8 0.48

442.5 0.75

1307 0.26

850.0 0.39

572.0 0.58

Simulated CFD Application

and 9. Timings are cited as complete run times, in seconds, as with the other benchmarks.

A complete solution of the LU benchmark requires 250 iterations. For the SP benchmark,

400 iterations are required. For the BT benchmark, 200 iterations are required.
The TC2000 results are due to staff at BBN. The Y-MP and C-90 results are due to

staff at CRI. The Intel and CM-2 results are due to S. Weeratunga, R. Fatoohi, E. Barszcz

and V. Venkatakrishnan of NAS.

8. Other Results

As far as we have been able to determine, the timings presented above all represent

runs that fully comply with the rules and restrictions stated in the benchmark document

[3]. One of these rules is that except for a short list of mathematical functions, assembly

language and assembly-coded library routines may not be used for computation. The

exceptions include the standard Fortran intrinsic functions, as well as routines to perform

dense matrix multiplication and fast Fourier transforms.

There are several reasons for these restrictions on assembly code. First of all, without

restrictions of some sort, an entire benchmark might be implemented in assembly-level code.

While such performance results might be interesting, they would hardly be indicative of the

performance that a scientist could reasonably expect on a full-scale application program.

One reason that only the above-mentioned routines are allowed is that in our experience

only these are generally available on new systems. For more specialized library routines,

it is difficult to determine whether they are truly general purpose, i.e. not relying on a

specific data layout. Furthermore, even if an assembly-coded library routine can be utilized

for an inner computational kernel, this does not help the large mass of additional coding

that comprises a full-scale application. In short, the tuning rules for the NPB reflect our

9

Computer Problem
System Size
Y-MP 643

C-90

TC2000

iPSC/860

CM-2

No.

Proc.

1

8

1

4

16

112

64

128

8K

16K

32K

Table 8: Results for the SP

Memory

(mwords)

Time Ratio to

(sec.) Y-MP/1
471.5 1.00

64.60 7.30

190.7 2.47

49.74 9.48

13.06 36.10

880.0 0.54

716.0 0.66

496.0 0.95

3900 0.12

2104 0.22

1080 0.44

Simulated CFD Application

Computer Problem

System Size
Y-MP 643

C-90

TC2000

iPSC/860

CM-2

No.

Proc.

1

8

1

4

16

112

64

128

16K

32K

Table 9: Results for the BT

Memory

(mwords)

Time

792.4

114.0

Ratio to

Y-MP/1

1.00

6.95

356.9 2.22

96.10 8.25

28.39 27.91

1378.0 0.58

724.0 1.09

422.0 1.88

3328.0

1914.0

0.24

0.41

Simulated CFD Application

10

Computer

Benchmark System

IS CM-2

LU

SP

BT

CM-200

CM-2

CM-2

CM-2

CM-200

No. Time Ratio to

Proc. (sec.) Y-MP/1

16K 35.8 0.32

32K 21.0 0.55

64K 14.9 0.77

64K 5.7 2.01

16K 868.0 0.38

32K 546.0 0.61

16K 1444 0.33

32K 917.0 0.51

64K 640.0 0.74

16K 1118 0.71

32K 634.0 1.25

64K 370.0 2.14

16K 832.0 0.95

32K 601.0 1.32

Table 10: Unofficial TMC Results Using Library Routines

expectation (and experience) that real scientific applications consist largely of Fortran or

C code, and that usage of library routines is restricted to a handful of widely available
mathematical functions.

Nonetheless, some scientists have attempted implementations of the NPB using library

routines beyond the ones allowed in [3]. In particular, Thinking Machines, Inc. has ob-

tained performance results using assembly-coded library routines for several of the NPB.

Their implementation of the IS benchmark, for example, runs more than twice as fast as

reported in Table 6, and their rates for the BT benchmark are nearly three times as fast

as reported in Table 9. Some of these results are shown in Table 10 [4].

9. Sustained Performance Per Dollar

One aspect of the relative performance of these systems has not been addressed so far,

namely the differences in price between these systems. We should not be too surprised

that the Cray C-90 system, for example, exhibits superior performance rates on these

benchmarks, since its current purchase price is much higher than that of the iPSC/860 and

the CM-2.

One way to compensate for these price differences is to compute sustained performance

per million dollars, i.e. the performance ratio figuresshown in Tables 2 through 9 divided

by the purchase price in millions. These numbers are shown in Table 11 for two of the

benchmarks, the FT benchmark and the LU benchmark. They are based on 36 million, 25

million, 3 million sad 5 million U.S. dollars, respectively, for the Cray C-90, the Cray Y-MP,

11

Benchmark

FT

LU

Computer

System

C-90

Y-MP

iPSC/860

CM-2

C-90

Y-MP

iPSC/860

CM-2

No.

Proc.

16 22.83

8 6.87

128 2.67

32K 1.58

16 18.93

8 6.74

128 0.75

32K 0.58

Table 11: Approximate Sustained

Ratio to Perf. per

Y-MP/1 million $

0.63

0.27

0.89

0.31

0.53

0.27

0.25

0.12

Performance Per Dollar

the Intel iPSC/860 and the CM-2. These are approximate current prices, obtained from

vendor personnel, for complete systems with 16, 8, 128 and 32K processors, respectively,

with one, two, one and four gigabytes of main memory, respectively, and with a typical

set of peripherals. Because of the approximate and changeable nature of these prices, and

because the memory sizes, disk capacities and I/O performances of these systems are not

equivalent, the figures in the last column of Table 11 should be interpreted as only very

rough indications of sustained performance per dollar.

10. Conclusions

With some algorithmic experimentation and tuning, respectable NPB performance rates

have been achieved on several multiprocessor systems. The 16 processor Cray C-90 system

is consistently the highest performing system tested, far surpassing any of the highly paral-

lel systems. The Intel 128 processor iPSC/860 system and the 32K CM-2 system each show

promise, but they do not yet demonstrate sustained performance comparable to full Cray

systems. Instead, in both cases their rates appear to be equivalent to about one or, in some

cases, two Y-MP processors. When sustained performance rates are normalized by system

prices, the situation is somewhat different: the highly parallel systems are approximately

on a par or only slightly lower than the Cray systems.

The Cray NPB performance results uniformly are large fractions (in some cases over

fifty percent) of the theoretical peak performance of these systems. By contrast, the NPB

performance rates on the highly paxallel systems are typically only two to five percent

of the theoretical peak performance of these systems. Reasons for the low sustained-to-

peak ratios on the highly parallel systems are not hard to identify: immature compilers,

insufficient bandwidth between processors and main memory, and insufficient bandwidth

between separate processing nodes. Clearly the challenge of the highly parallel vendors is

to alleviate these bottlenecks in future editions of their systems.

Some scientists have suggested that the answer to obtaining high performance rates on

highly parallel computers is to substitute alternative algorithms that have lower interpro-

12

cessorcommunication requirements. However, it has been the experience of the scientists

in our research group that a certain amount of long-distance communication is unavoidable

for these types of applications. Alternative algorithms that have higher computation rates

usually require more iterations to converge to a solution and thus require more overall run

time. Clearly it is pointless to employ numerically inefficient algorithms merely to exhibit

artificially high performance rates on a particular parallel architecture [1].

What this means to us is that future highly parallel systems must exhibit significantly

improved interprocessor communications performance. We feel that those highly parallel

systems which cannot demonstrate good performance on communication intensive problems

will be of limited usability in the mainstream of scientific computation.

References

[1] D. H. Bailey, "Twelve Ways to Fool the Masses When Giving Performance Results on

Parallel Computers", Supercomputing Review, August 1991, p. 54 - 55. Also published

in Supercomputer, September 1991, p. 4 - 7.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V.

Venkatakrishnan, and S. K. Weeratunga, "The NAS Parallel Benchmarks", Intl. Journal

of Supercomputer Applications, v. 5, no. 3 (Fall 1991), pp. 63- 73.

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon, eds., "The NAS Parallel Benchmarks",

Technical Report RNR-91-02, NASA Ames Research Center, Moffett Field, CA 94035,

January 1991.

[4] G. Bhanot, K. Jordan, J. Kennedy, J. Richardson, D. Sandee and M. Zagha, "Im-

plementing the NAS Parallel Benchmarks on the CM-2 and CM200 Supercomputers",

Thinking Machines Corp, Cambridge, MA 02142.

[5] S. Breit, W. Celmaster, W. Coney, R. Foster, B. Gaiman, G. Montry and C. Selvidge,

"The Role of Computational Balance in the Implementation of the NAS parallel Bench-

marks on the BBN TC2000 Computer', submitted to Concurrency, April 1991.

13

